Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Korean Neurosurgical Society ; : 183-192, 2019.
Artigo em Inglês | WPRIM | ID: wpr-765335

RESUMO

OBJECTIVE: The objective of this study was to analyze patient-specific blood flow in ruptured aneurysms using obtained non-Newtonian viscosity and to observe associated hemodynamic features and morphological effects. METHODS: Five patients with acute subarachnoid hemorrhage caused by ruptured posterior communicating artery aneurysms were included in the study. Patients’ blood samples were measured immediately after enrollment. Computational fluid dynamics (CFD) was conducted to evaluate viscosity distributions and wall shear stress (WSS) distributions using a patient-specific geometric model and shear-thinning viscosity properties. RESULTS: Substantial viscosity change was found at the dome of the aneurysms studied when applying non-Newtonian blood viscosity measured at peak-systole and end-diastole. The maximal WSS of the non-Newtonian model on an aneurysm at peaksystole was approximately 16% lower compared to Newtonian fluid, and most of the hemodynamic features of Newtonian flow at the aneurysms were higher, except for minimal WSS value. However, the differences between the Newtonian and non-Newtonian flow were not statistically significant. Rupture point of an aneurysm showed low WSS regardless of Newtonian or non-Newtonian CFD analyses. CONCLUSION: By using measured non-Newtonian viscosity and geometry on patient-specific CFD analysis, morphologic differences in hemodynamic features, such as changes in whole blood viscosity and WSS, were observed. Therefore, measured non-Newtonian viscosity might be possibly useful to obtain patient-specific hemodynamic and morphologic result.


Assuntos
Humanos , Aneurisma , Aneurisma Roto , Viscosidade Sanguínea , Hemodinâmica , Hidrodinâmica , Aneurisma Intracraniano , Ruptura , Hemorragia Subaracnóidea , Viscosidade
2.
Journal of Korean Neurosurgical Society ; : 183-192, 2019.
Artigo em Inglês | WPRIM | ID: wpr-788764

RESUMO

OBJECTIVE: The objective of this study was to analyze patient-specific blood flow in ruptured aneurysms using obtained non-Newtonian viscosity and to observe associated hemodynamic features and morphological effects.METHODS: Five patients with acute subarachnoid hemorrhage caused by ruptured posterior communicating artery aneurysms were included in the study. Patients’ blood samples were measured immediately after enrollment. Computational fluid dynamics (CFD) was conducted to evaluate viscosity distributions and wall shear stress (WSS) distributions using a patient-specific geometric model and shear-thinning viscosity properties.RESULTS: Substantial viscosity change was found at the dome of the aneurysms studied when applying non-Newtonian blood viscosity measured at peak-systole and end-diastole. The maximal WSS of the non-Newtonian model on an aneurysm at peaksystole was approximately 16% lower compared to Newtonian fluid, and most of the hemodynamic features of Newtonian flow at the aneurysms were higher, except for minimal WSS value. However, the differences between the Newtonian and non-Newtonian flow were not statistically significant. Rupture point of an aneurysm showed low WSS regardless of Newtonian or non-Newtonian CFD analyses.CONCLUSION: By using measured non-Newtonian viscosity and geometry on patient-specific CFD analysis, morphologic differences in hemodynamic features, such as changes in whole blood viscosity and WSS, were observed. Therefore, measured non-Newtonian viscosity might be possibly useful to obtain patient-specific hemodynamic and morphologic result.


Assuntos
Humanos , Aneurisma , Aneurisma Roto , Viscosidade Sanguínea , Hemodinâmica , Hidrodinâmica , Aneurisma Intracraniano , Ruptura , Hemorragia Subaracnóidea , Viscosidade
3.
Journal of Korean Neurosurgical Society ; : 689-699, 2018.
Artigo em Inglês | WPRIM | ID: wpr-765307

RESUMO

OBJECTIVE: The goal of this study was to compare several parameters, including wall shear stress (WSS) and flow pattern, between unruptured and ruptured anterior communicating artery (ACoA) aneurysms using patient-specific aneurysm geometry. METHODS: In total, 18 unruptured and 24 ruptured aneurysms were analyzed using computational fluid dynamics (CFD) models. Minimal, average, and maximal wall shear stress were calculated based on CFD simulations. Aneurysm height, ostium diameter, aspect ratio, and area of aneurysm were measured. Aneurysms were classified according to flow complexity (simple or complex) and inflow jet (concentrated or diffused). Statistical analyses were performed to ascertain differences between the aneurysm groups. RESULTS: Average wall shear stress of the ruptured group was greater than that of the unruptured group (9.42% for aneurysm and 10.38% for ostium). The average area of ruptured aneurysms was 31.22% larger than unruptured aneurysms. Simple flow was observed in 14 of 18 (78%) unruptured aneurysms, while all ruptured aneurysms had complex flow (p < 0.001). Ruptured aneurysms were more likely to have a concentrated inflow jet (63%), while unruptured aneurysms predominantly had a diffused inflow jet (83%, p=0.004). CONCLUSION: Ruptured aneurysms tended to have a larger geometric size and greater WSS compared to unruptured aneurysms, but the difference was not statistically significant. Flow complexity and inflow jet were significantly different between unruptured and ruptured ACoA aneurysms.


Assuntos
Aneurisma , Aneurisma Roto , Artérias , Hidrodinâmica , Aneurisma Intracraniano
4.
Journal of Korean Neurosurgical Society ; : 689-699, 2018.
Artigo em Inglês | WPRIM | ID: wpr-788737

RESUMO

OBJECTIVE: The goal of this study was to compare several parameters, including wall shear stress (WSS) and flow pattern, between unruptured and ruptured anterior communicating artery (ACoA) aneurysms using patient-specific aneurysm geometry.METHODS: In total, 18 unruptured and 24 ruptured aneurysms were analyzed using computational fluid dynamics (CFD) models. Minimal, average, and maximal wall shear stress were calculated based on CFD simulations. Aneurysm height, ostium diameter, aspect ratio, and area of aneurysm were measured. Aneurysms were classified according to flow complexity (simple or complex) and inflow jet (concentrated or diffused). Statistical analyses were performed to ascertain differences between the aneurysm groups.RESULTS: Average wall shear stress of the ruptured group was greater than that of the unruptured group (9.42% for aneurysm and 10.38% for ostium). The average area of ruptured aneurysms was 31.22% larger than unruptured aneurysms. Simple flow was observed in 14 of 18 (78%) unruptured aneurysms, while all ruptured aneurysms had complex flow (p < 0.001). Ruptured aneurysms were more likely to have a concentrated inflow jet (63%), while unruptured aneurysms predominantly had a diffused inflow jet (83%, p=0.004).CONCLUSION: Ruptured aneurysms tended to have a larger geometric size and greater WSS compared to unruptured aneurysms, but the difference was not statistically significant. Flow complexity and inflow jet were significantly different between unruptured and ruptured ACoA aneurysms.


Assuntos
Aneurisma , Aneurisma Roto , Artérias , Hidrodinâmica , Aneurisma Intracraniano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA